Description:The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Readers will find that the second edition includes significant changes that bring the text up to date on current information retrieval methods. For example, the authors have added a completely new chapter on link-structure algorithms used in search engines such as Google, and the chapter on user interface has been rewritten to specifically focus on search engine usability. To reflect updates in the literature on information retrieval, the authors have added new recommendations for further reading and expanded the bibliography. In addition, the index has been updated and streamlined to make it more reader friendly.Instructors will find that the book serves as an excellent companion text for courses in information retrieval, applied linear algebra, and scientific computing. Because of the authors' informal, conversational tone, readers with nonmathematical backgrounds also will appreciate the less technical chapters of the text.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Understanding Search Engines: Mathematical Modeling and Text Retrieval. To get started finding Understanding Search Engines: Mathematical Modeling and Text Retrieval, you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
—
Format
PDF, EPUB & Kindle Edition
Publisher
—
Release
—
ISBN
0898715814
Understanding Search Engines: Mathematical Modeling and Text Retrieval
Description: The second edition of Understanding Search Engines: Mathematical Modeling and Text Retrieval follows the basic premise of the first edition by discussing many of the key design issues for building search engines and emphasizing the important role that applied mathematics can play in improving information retrieval. The authors discuss important data structures, algorithms, and software as well as user-centered issues such as interfaces, manual indexing, and document preparation. Readers will find that the second edition includes significant changes that bring the text up to date on current information retrieval methods. For example, the authors have added a completely new chapter on link-structure algorithms used in search engines such as Google, and the chapter on user interface has been rewritten to specifically focus on search engine usability. To reflect updates in the literature on information retrieval, the authors have added new recommendations for further reading and expanded the bibliography. In addition, the index has been updated and streamlined to make it more reader friendly.Instructors will find that the book serves as an excellent companion text for courses in information retrieval, applied linear algebra, and scientific computing. Because of the authors' informal, conversational tone, readers with nonmathematical backgrounds also will appreciate the less technical chapters of the text.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Understanding Search Engines: Mathematical Modeling and Text Retrieval. To get started finding Understanding Search Engines: Mathematical Modeling and Text Retrieval, you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.