Description:Televisions, telephones, watches, calculators, robots, airplanes and space vehicles all depend on silicon chips. Life as we know it would hardly be possible without semiconductor devices. An understanding of how these devices work requires a detailed knowledge of the physics of semiconductors, including charge transport and the emission and absorption of electromagnetic waves. This book may serve both as a university textbook and as a reference for research and microelectronics engineering. Each section of the book begins with a description of an experiment. The theory is then developed as far as necessary to understand the experimental results. Everyone with high-school mathematics should be able to follow the calculations. A band structure calculation for the diamond lattice is supplemented with a personal computer program. Semiconductor physics developed most rapidly in the two decades following the invention of the transistor, and naturally most of the references date from this time. But recent developments such as the Gunn effect, the acoustoelectric effect, superlattices, quantum well structures, and the integral and fractional quantum Hall effect are also discussed. The book has appeared in translation in Russian, Chinese and Japanese.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Semiconductor Physics: An Introduction (Springer Series in Solid-State Sciences). To get started finding Semiconductor Physics: An Introduction (Springer Series in Solid-State Sciences), you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
—
Format
PDF, EPUB & Kindle Edition
Publisher
—
Release
—
ISBN
354019410X
Semiconductor Physics: An Introduction (Springer Series in Solid-State Sciences)
Description: Televisions, telephones, watches, calculators, robots, airplanes and space vehicles all depend on silicon chips. Life as we know it would hardly be possible without semiconductor devices. An understanding of how these devices work requires a detailed knowledge of the physics of semiconductors, including charge transport and the emission and absorption of electromagnetic waves. This book may serve both as a university textbook and as a reference for research and microelectronics engineering. Each section of the book begins with a description of an experiment. The theory is then developed as far as necessary to understand the experimental results. Everyone with high-school mathematics should be able to follow the calculations. A band structure calculation for the diamond lattice is supplemented with a personal computer program. Semiconductor physics developed most rapidly in the two decades following the invention of the transistor, and naturally most of the references date from this time. But recent developments such as the Gunn effect, the acoustoelectric effect, superlattices, quantum well structures, and the integral and fractional quantum Hall effect are also discussed. The book has appeared in translation in Russian, Chinese and Japanese.We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Semiconductor Physics: An Introduction (Springer Series in Solid-State Sciences). To get started finding Semiconductor Physics: An Introduction (Springer Series in Solid-State Sciences), you are right to find our website which has a comprehensive collection of manuals listed. Our library is the biggest of these that have literally hundreds of thousands of different products represented.